Effect of the Infectious Bursal Disease Vaccine on the Aero-Anaerobic Enteric Bacterial Flora of Chickens

F.A. Kembi1* M.A. Oyekunle2 O.O. Oduwole1

1. Department of Biological Sciences, Ogun State University, Ago-Iwoye, Nigeria
2. Department of Animal Production, Ogun State University, Ago-Iwoye, Nigeria
* Author for correspondence
Current address: Morehouse School of Medicine, Master of Public Health Program, 720 Westview Drive, SW Suite 8-B, Atlanta GA 30310-1495, USA
E-mail: kembi@msm.edu

Key words

Summary
The enteric bacterial flora of birds was examined after vaccination with the infectious bursal disease (IBD) vaccine via the ocular and oral routes. Throughout the test period, the bacterial loads were higher in the test groups than in the control (p < 0.05). However, significant differences between the two test groups only occurred in the first three weeks postvaccination. The bacteria isolates included Salmonella sp., Edwardsiella sp., Escherichia sp. and Klebsiella sp. in the test and control groups.

INTRODUCTION

The infectious bursal disease (IBD) is of great economic importance to the poultry industry because of the mortality and morbidity it causes in infected birds. Vaccination of the flock with the infectious bursal disease vaccine is used to protect the birds. The IBD agent has an immunosuppressive effect on birds, which interferes with the ability of the birds to respond satisfactorily to vaccination against, for example, the Newcastle disease (4, 5). It also results in increased susceptibility to other diseases caused by Salmonella typhimurium and Escherichia coli (10).

In the present study, the effects of the IBD vaccine on the aero-anaerobic bacterial flora of the chicken before and after vaccination were examined to show to what potential dangers vaccinated birds might be exposed.

MATERIALS AND METHODS

Experimental birds
One hundred day-old cockerels were obtained from a local hatchery in Ogun State, Nigeria, and were reared in a brooder house for 10 days. On day 11, they were randomly divided into three groups, A, B and C, with thirty birds per group, and housed in individual cages. All the birds were supplied with commercial chick mash and water ad libitum.

Vaccines and vaccinations
Two vials of IBD live Bp (Vet) intermediate-strain vaccine (Batch No 47), produced by the vaccine division of Venkateshwara hatcheries, India, mfg-lic no.pD-10, were used. The vaccines were reconstituted in normal saline according to the manufacturer’s guideline. It was stabilized by adding skim milk.

The birds were vaccinated with the primary dose of the IBD vaccine at two weeks of age, and the booster dose was administered at five weeks of age. Group A birds were vaccinated ocularly, group B orally, and group C was the unvaccinated control.
Sample collection

Fecal samples were collected from all the groups at weekly intervals in clean polyethylene sheets spread under the cage for two hours and transported to the laboratory immediately afterwards. The prevaccination fecal samples were collected in the first two weeks of life; subsequent fecal samples collection was done weekly postvaccination for five weeks.

Bacterial isolation and identification

Fecal samples from five or six birds in the same group were pooled, thoroughly mixed, then considered as a sample from the group. Serial ten-fold dilution of the fecal samples was carried out. Using the pour plate technique, triplicate plates of sterile molten MacConkey agar (Oxoid) and nutrient agar (Oxoid) were inoculated with 1-ml suspension of the fecal sample. Inoculated plates were incubated at 37°C for 24 h and observed for bacterial growth. Colonies of the different bacterial isolates were counted with a magnifying lens. The various bacterial genera were identified based on their colonial and cell morphology, and biochemical properties (2, 7, 9). The colonial morphology of the isolates on MacConkey agar (Oxoid) and blood agar (Oxoid) plates was assessed according to the following criteria: size and shape of colonies, consistency, pigment changes and formation of gas in the media (2). Gram stain was used on film preparations of cultures from MacConkey and blood agar plates to assess cell morphology (6). The isolates were biochemically tested for catalase, oxidase, lysine, decaboxyllase, methyl red, Voges-Proskauer, nitrate reduction, indole, and hydrogen sulfide production and citrate utilization (7, 9).

Statistical analysis

Values of the bacterial count were expressed as means per gram of feces plus/minus the standard deviation. Bacterial loads between the groups were tested for significant differences using the analysis of variance.

RESULTS

Six bacteria species were isolated from the three experimental groups. Two of the isolates were unidentified; the others included Edwardsiella sp., Salmonella sp., Escherichia sp., and Klebsiella sp. Two unidentified species, Edwardsiella sp. and Salmonella sp., were isolated from the prevaccinated sample. In addition, Escherichia sp. and Klebsiella sp. were isolated from the postvaccination sample.

Analysis of fecal samples collected during the first and second weeks before vaccination gave a mean bacterial count of 9×10^6 plus/minus the standard deviation. Bacterial loads between the groups were tested for significant differences using the analysis of variance.

In the first week postvaccination, the aero-anaerobic bacteria load was highest in the oculary vaccinated group, followed by the orally vaccinated group and was lowest in the control. All the values differed significantly ($p < 0.05$). In the second and third weeks postvaccination, the mean bacterial counts also differed significantly ($p < 0.05$): the highest bacterial counts were found in birds vaccinated through the oral route, followed by those vaccinated oculary; the control had the lowest. In the fourth and fifth weeks postvaccination, there was no significant difference in bacterial counts between the two test groups ($p > 0.05$), but both differed significantly from the control ($p < 0.05$) (Table I).

Table I

<table>
<thead>
<tr>
<th>Weeks after vaccination</th>
<th>Control</th>
<th>Oral route</th>
<th>Ocular route</th>
<th>SEM*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>71.0c</td>
<td>102.0b</td>
<td>189.5a</td>
<td>4.29</td>
</tr>
<tr>
<td>2</td>
<td>100.0c</td>
<td>287.5a</td>
<td>142.5b</td>
<td>4.42</td>
</tr>
<tr>
<td>3</td>
<td>122.0c</td>
<td>242.5a</td>
<td>176.0b</td>
<td>2.72</td>
</tr>
<tr>
<td>4</td>
<td>96.0b</td>
<td>200.5a</td>
<td>192.5a</td>
<td>2.35</td>
</tr>
<tr>
<td>5</td>
<td>80.5b</td>
<td>250.5a</td>
<td>181.5a</td>
<td>11.59</td>
</tr>
</tbody>
</table>

* Standard error of the mean

REFERENCES

Résumé

Kembi F.A., Oyekunle M.A., Oduwole O.O. Effet du vaccin contre la maladie de Gumboro sur la flore bactérienne intestinale de poulets

La flore bactérienne intestinale de volailles a été examinée après vaccination avec le virus de la maladie de Gumboro par goutte dans l’œil et par eau de boisson. Pendant la période de l’étude, les charges bactériennes ont été plus importantes dans les lots vaccinés que dans le lot témoin (p < 0,05). Cependant, des différences significatives entre les deux groupes vaccinés n’ont été observées que dans les trois premières semaines post vaccination. Les bactéries isolées comprenaient Salmonella sp., Edwardsiella sp., Escherichia sp. et Klebsiella sp. dans les lots vaccinés et témoin.

Resumen

Kembi F.A., Oyekunle M.A., Oduwole O.O. Efecto de una vacuna contra la enfermedad infecciosa de la bursa sobre la flora bacteriana entérica aeróbica-anaeróbica de los pollos

Se examinó la flora bacteriana entérica de las aves después de la vacunación con una vacuna contra la enfermedad infecciosa de bursa (IBD) vía ocular y oral. A lo largo del periodo de prueba, las cargas bacterianas fueron superiores en los grupos test que en el grupo control (p < 0,05). Sin embargo, solo se observaron diferencias significativas entre los dos grupos durante las tres primeras semanas post vacunación. Los aislamientos bacterianos incluyeron: Salmonella sp., Edwardsiella sp., Escherichia sp. y Klebsiella sp., tanto en los grupos test como los control.